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Generalization of the one-dimensional totally asymmetric exclusion process �TASEP� with open boundary
conditions in which particles are allowed to jump l sites ahead with the probability pl�1/ l�+1 is studied by
Monte Carlo simulations and the domain-wall approach. For ��1 the standard TASEP phase diagram is
recovered, but the density profiles display additional features when 1���2. At the first-order transition line,
the domain wall is localized and phase separation is observed. In the maximum-current phase the profile has an
algebraic decay with a �-dependent exponent. Within the ��1 regime, where the transitions are found to be
absent, analytical results in the continuum mean-field approximation are derived in the limit �=−1.
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I. INTRODUCTION

The asymmetric exclusion process �ASEP� represents one
of the basic models in studying the rich behavior of systems
held far from equilibrium �1�. It was first introduced in �2,3�
as a lattice model for protein synthesis and since then has
been related to a wide range of other nonequilibrium phe-
nomena, like surface growth �4,5� belonging to the Kardar-
Parisi-Zhang universality class �6� or traffic flow �7�. In one
dimension, subject to open boundary conditions, the ASEP
exhibits nonequilibrium phase transitions of the first and sec-
ond order, which cannot occur in one-dimensional systems
that are in thermal equilibrium and include only short-range
interactions. The finding of the exact analytical solution to
this model �8–10� contributed to a better understanding of
general mechanisms leading to phase transitions in systems
out of equilibrium �11�. A number of different extensions of
this model have shown that the ASEP phase diagram is quite
robust to various modifications �12�.

The formulation of a large-deviation function �13,14�, as a
nonequilibrium equivalent of the free energy, pointed out the
importance of the effective long-range interactions appearing
in these processes. In the present paper we include the long-
range effect into this model in an explicit way, and examine
the consequences for the phase diagram and critical behavior
at the transition lines. We investigate the generalization of
the totally asymmetric exclusion process �TASEP� in which
long-range interactions are introduced by letting particles
overpass each other by jumping any distance 1� l�L with
the probability pl� l−�−1. Similar extensions have been con-
sidered in the high-speed Nagel-Schreckenberg traffic model
�7,15� where cars are allowed to speed up if there is more
than one empty site in front. However, these models do not
allow cars to pass each other, which is justified for modeling
single-lane traffic.

An example of transport where particles are allowed to
overpass each other may be found in the movement of the
genome regulatory proteins along the DNA; namely, proteins
bind to nonspecific sites on the DNA and search for a spe-

cific target site either by one-dimensional diffusion along the
DNA �sliding� or by continuous dissociation from and reas-
sociation with the DNA. Once dissociated, proteins undergo
three-dimensional diffusion and eventually rebind to another
site. This process is either macroscopic �the fully dissociated
protein rebinds to a random site on DNA� or microscopic
�the dissociated protein remains within the range of the elec-
trostatic potential of DNA and rebinds to one of several
nearby sites� �16�. In terms of the TASEP, the first case cor-
responds to the creation and annihilation of particles in the
bulk with constant rates �17�. In the second case, dissociation
and reassociation events are correlated in space, which can
be described in the TASEP through the possibility for par-
ticles to travel larger distances in a single jump.

The paper is organized as follows: In Sec. II we describe
the generalization of the ASEP to long-range hopping, along
with the definition of the open boundary conditions adjusted
to include the hopping with extended range. In Sec. III we
present numerical results obtained by Monte Carlo simula-
tions and compare them to the expected phase diagram ob-
tained from the current-density relation �fundamental dia-
gram�. In Sec. IV we proceed to investigate density profiles.
Using the domain-wall approach, we determine the criterion
for the phase separation in terms of the parameter �. In the
maximum-current phase, using the appropriate scaling of
density profiles, we find that the density profiles decay alge-
braically with an exponent that depends continuously on �
for 1���2, while the usual exponent 1

2 from the ASEP is
recovered for ��2. Conclusions are given in Sec. V.

II. LONG-RANGE HOPPING WITH EXCLUSION

We consider the totally asymmetric exclusion process on
a one-dimensional chain consisting of L sites where each site
i is either occupied by a particle ��i=1� or empty ��i=0�.
Instead of only nearest-neighbor hopping, we allow each par-
ticle to jump from the site i to any empty site j� i on the
right with a probability pl which decays with distance l= �i
− j� as

pl =
1

�L�� + 1�
1

l�+1 , �1�

where the normalization �L��+1�=�i=1
L i−�−1 is the partial

sum of the Riemann zeta function. In the limit �→�, the
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jump probability �1� becomes pl=	l,1 and the model reduces
to the standard TASEP with nearest-neighbor hopping.

In order to define open boundary conditions we first in-
troduce particle reservoirs on the left and right ends of the
chain, with constant densities 
 and 1−�, respectively, com-
prising L sites each. Since each particle can travel up to L
sites in one jump, we allow any particle from the original
chain to jump to the right reservoir. For example, the particle
at the site L can jump to any site in the right reservoir,
whereas the particle at the first site can jump only to the site
L+1 �first site of the right reservoir�. Therefore, the total
probability �i that the particle will leave the chain from the
site i is the sum of probabilities of all possible jumps to the
right reservoir from the site i, multiplied by the probability �
that a site in the right reservoir is not occupied:

�i =
�

�L�� + 1� �
j=L−i+1

L
1

j�+1 . �2�

Similarly, only the particles from the left reservoir that are
within a distance L from the site i in the chain can jump to
the site i. Since the probability to find the particle at any site
in the left reservoir is 
, the total probability 
i that the
particle from the left reservoir will enter the chain at the site
i is given by


i =



�L�� + 1��j=i

L
1

j�+1 . �3�

Due to the particle-hole symmetry that is present in our
model, the probabilities 
i and �i are not independent;
namely, particles jumping to the right can be seen as holes
jumping to the left, which gives the relation 
i=
�L−i+1 /�.

Within the continuous-time dynamics, the time evolution
of the system is described by the master equation

�P�C,t�
�t

= �
C�

W�C� → C�P�C�,t� − �
C�

W�C → C��P�C,t� ,

�4�

where P�C , t� is the probability of the system being in the
state C �given by the particular configuration of particles
��i � i=1, . . . ,L	� at time t and W�C→C���t ��t→0� is the
probability of the system going from the state C to the state
C� in the time interval �t , t+�t�. Given any state C= ��	, let
Ci,j be the configuration obtained from C, with �i and � j
exchanging places, and Ci the configuration obtained from C
with �i→1−�i. The system then evolves in time in one of
two ways: either by exchanging particles and holes with the
reservoirs �C→Ci� or by exchanging the particle at the site i
with the hole at the site j� i �C→Cij�. The impact of each of
these two contributions depends on the interaction parameter
�. To each update mechanism we can assign a characteristic
length defined as the first moment of the corresponding jump
probability distribution.

For the jumps within the chain, we get the average dis-
tance L as

L��� = �
l=1

L

lpl =
�L���

�L�� + 1�
. �5�

Similarly, the average distances �− and �+ from the
boundaries at which the particles are injected and removed
from the chain, respectively, are given by

�− = 
�L���, �+ = ��L��� , �6�

where �L��� is defined as

�L��� =
1



�
l=1

L

l
l =
1

�
�
l=1

L

l�l =
L���

2

1 +

�L�� − 1�
�L���

� .

�7�

By comparing these two lengths in the limit L→�, two dif-
ferent regions may be distinguished with respect to the pa-
rameter �: for ��2, both =limL→�L and �=limL→��L are
finite, whereas for 1���2,  is finite, but � diverges. In the
first case the particles, on average, enter and leave the chain
within some finite distance � from the boundaries. In the
second case, where � is infinite, particles are, on average,
created and annihilated in the bulk and the model is in a
regime similar to the TASEP with a bulk reservoir �17�. The
results presented below confirm this simple estimate.

From the master equation �4�, the time change of the av-
erage particle density ��i�t� at the site i is given by the
discrete lattice continuity equation

d

dt
��i�t� = Ji − Ji+1, �8�

where Ji is the total current of particles, both those passing
over the site i and those leaving it,

Ji = �
k=i+1

L


k�1 − ��k� + �
k=1

i

�
l=i+1

L

pl−k��k�1 − �l� + �
k=1

i

�k��k .

�9�

In the stationary state, the current Ji is site independent, and
we can simply write the total current Ji� jL�
 ,� ,�� as a
function of parameters 
, �, �, and L.

In order to make a comparison with the TASEP, we first
examine the dependence of the total current jL on parameters

 and �, and possible discontinuities in its derivatives lead-
ing to nonequilibrium phase transitions.

III. PHASE DIAGRAM

From the way the boundary conditions were constructed,
we already know that the special choice of 
 and � such that

=1−� is equivalent to the case where the boundary condi-
tions are periodic. Since the translational invariance is then
restored, all configurations C are equally probable �4�. The
stationary density profile is flat, i.e., ��i=
, which upon in-
serting into the expression for the current �9� gives

jL�
,�,�� = L���
�1 − 
�, 
 + � = 1. �10�

In the case of periodic boundary conditions ��i=�i+L�, the
number of particles N is conserved, and the average density
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profile ��i is constant and equal to N /L. This gives the
current-density relation �Fig. 1�

j��� = L��1 − �� . �11�

It has been argued �18,19� that the knowledge of the current-
density relation j��� is sufficient to determine the phase dia-
gram of a driven diffusive system coupled to the left and
right reservoirs with constant densities �−=
 and �+=1−�,
respectively. Explicitly, it was suggested �19� that the station-
ary current of the system with open boundaries, in case of a
positive drift �j�0�, is always selected according to the ex-
tremal principle

j = �max�j���,�+ � � � �−	 , �− � �+,

min�j���,�− � � � �+	 , �− � �+.
�12�

In the present model, the current-density relation �11� has
several important properties: �i� except for the factor L���,
which accounts for the average length of the jumps, it is the
same as in the TASEP; �ii� in the infinite system the factor ,
and therefore the current as well, are finite only for ��1;
�iii� j��� is symmetric to particle-hole exchange. From the
last property it follows that the phase diagram is symmetric
to the mutual exchange of the parameters 
 and �. If the
extremal principle applies to our model, the first property
means that the structure of the phase diagram is the same as
in the TASEP. The second property then ensures that the
current is still well defined for an infinite system.

In the present model, the current has only one maximum
at �*=1/2, as in the TASEP. Consequently, the expected
phase diagram has three phases: a maximum-current phase in
the domain �−��*, �+��*, with the bulk density �=�*, a
low-density phase in the domain �−��*, with the bulk den-
sity �=�−, and a high-density phase in the domain 1−�+
��*, with the bulk density �=1−�+.

The agreement of these predictions with the Monte Carlo
simulations for different parameters 
, �, and � is presented
in the following section.

A. Numerical results

Monte Carlo �MC� simulations were performed with the
random sequential update. In other words, in each discrete
time step �L such steps making one Monte Carlo step per site

�MCS/site��, the site i is randomly chosen from the chain of
L sites. If the site i is empty, a particle jumps from the left
reservoir to the site i with the probability 
i. If the site i is
occupied, an integer m� �1, . . . ,L	 is drawn from the prob-
ability distribution pm and two cases are possible: in the first
case, if the site i+m�L is empty, the particle at the site i
jumps to the site i+m, whereas in the second case, if i+m
�L, the particle leaves the chain with the probability �. In a
typical run of the simulation we calculated the time averages
of density profiles and the particle current jL, omitting the
results from the first t0 MCS/site, where t0 is the time re-
quired for the system to reach the �quasi�stationary state. In
exploring the phase diagram, a modest size L=200 was suf-
ficient, and we used t� t0�106 MCS/site.

We found the same phase diagram as in the TASEP only
for ��1, which is in agreement with the fact that  diverges
for ��1. Since these two regions are essentially different,
we treat them separately.

The case ��1. For ��1 the results of the MC simula-
tions, depending on parameters 
 and �, reveal three phases
with the boundaries �Fig. 2� and bulk densities of each phase
the same as in the TASEP �9,10�. In order to check the order
of the phase transitions across the boundaries, we consider
the bulk density �= �N /L and the current jL as functions of

 for two characteristic constant values of � �Figs. 3 and 4�.
Since the phase diagram is symmetric to the exchange

↔�, this is sufficient to cover the phase diagram in the
whole region of the parameters 0�
 ,��1.

In Fig. 3 we observe that for ��1 the bulk density has a
discontinuity at the coexistence line 
=� between the low-
density and high-density phases, which is characteristic of a
first-order transition. In Fig. 4 the continuous transition to the
maximum-current phase is presented. Although finite-size ef-
fects in the maximum-current phase are visible, this diagram
is in agreement with the extremal principle �12� for �*

=1/2 and symmetric to the mutual exchange of parameters 

and �, as concluded above from symmetry considerations.

The case ��1. In this domain, the current diverges in the
limit L→� and it turns out that this completely destroys the
phase diagram. The results from Monte Carlo simulations
show the absence of the first- and second-order phase tran-
sitions, as shown in Fig. 3 �for varying 
 at constant �
=0.3� and Fig. 4 �for varying 
 at constant �=0.7�.

FIG. 1. Fundamental diagram of the TASEP with long-range
hopping with �=1.5 �solid line� and with nearest-neighbor hopping
�dashed line�.

FIG. 2. Phase diagram for ��1 from the results of Monte Carlo
simulations consisting of low-density �A�, high-density �B�, and
maximum-current �C� phases.
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In the limiting case �=−1, a simple analytical solution of
the stationary Eq. �8� may be derived in the continuum
mean-field approximation for 
=� �see Appendix A�; i.e.,
by assuming ��i� j= ��i�� j and setting x= i /L in the limit
L→�. In particular, the current can be written in the closed
form as

j/L =

�2
 + 3�

2

1 −

2


�1 − 2

Arsh� 1 − 2


2
�2
 + 3�� .

�13�

It should be pointed out that all derivatives of �13� are
smooth functions of 0�
=��1.

IV. DENSITY PROFILES

Monte Carlo simulations show that in the region ��1,
different phases have the same bulk density as in the stan-
dard TASEP. On the other hand, at the phase boundaries the
spatial dependence of density profiles differs from the one in
the TASEP and in general depends on �. The exact solution
of the present model is unknown and the mean-field approxi-
mation does not simplify it since it gives a complicated re-
cursion equation for the average density ��i that includes all
the other densities �� j, j� i. The only case we managed to

solve in closed form is the limiting case �=−1 in the con-
tinuum limit �see Appendix A for 
=��, which is out of our
main scope due to the absence of phase transitions in the
region ��1.

In this section, we show how the domain-wall approach,
previously used in the TASEP �21�, can be applied to the
present model for the special choice of parameters 
=�
�1/2 as long as ��1, and treated analytically in order to
compare it with the results from the simulations.

In the maximum-current phase, to which this approach
does not apply, the spatial dependence of the density profile
is investigated by applying finite-size scaling to the results
obtained from the MC simulations.

A. Line �=�

The domain-wall approach �21� in the TASEP is a way to
describe the collective motion of particles with a steplike
shock profile performing the homogeneous random walk on
a one-dimensional lattice consisting of L+1 sites. The ap-
proach is based on the fact that the stationary continuity
equation �8� in the hydrodynamic limit, which is precisely
the inviscid Burgers equation �20�, has a multivalued solu-
tion at some point xs. This can be described by the formation
of a discontinuity �shock� in a density profile moving with
the velocity vs �22�,

vs =
j���xs

+�� − j���xs
−��

��xs
+� − ��xs

−�
. �14�

Depending on the sign of this velocity, the shock in the
TASEP is localized either at the left boundary �high-density
phase� or at the right boundary �low-density phase�. For 

=� the velocity vs vanishes and, since the shock has equal
probability to be at any site, the resulting density profile is
linear.

In order to apply this approach to the present model, one
has to assume a particular shock profile. In general, this can
be done by investigating the continuum mean-field approxi-
mation of the continuity equation �8� and constructing the
shock profile from two solutions, each matching one bound-
ary condition. Instead, for ��1, we approximated the in-
stantaneous shock profile �s�x� with a step function, as has
been done in the TASEP:

�s�x� = �
 , x � xs,

1 − � , x � xs.
�15�

This is justified by the fact that the phase diagram, deter-
mined by the bulk density in each phase, is the same as in the
TASEP. However, the feature in which the present case dif-
fers from the TASEP is that the hopping rates of the random
walker are site dependent, because the excess current of all
particles entering and leaving the low-density or the high-
density domain depends on the position of the shock. This
feature was already encountered in the TASEP with the
“Langmuir kinetics” �24�, in which particles are created and
annihilated in the bulk with constant rates �C and �D, re-
spectively.

FIG. 3. Dependence of the bulk density � on 
 for �=0.3 and
various � �L=200, t=2�106 MCS/site� compared to the bulk den-
sity in the TASEP �dashed lines�.

FIG. 4. Dependence of current jL�
 ,� ,�� /L on 
 for �=0.7
and various � �L=200, t=2�106 MCS/site� compared to the cur-
rent in the TASEP �dashed line�.
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The hopping rate ri from the site i to the site i+1 is
proportional to the total current of particles entering and
leaving the high-density domain �+=1−�:

ri =
1

1 − 
 − �

�

j=i

L

� j�1 − �� − �
j=i

L


 j��, i = 1, . . . ,L .

�16�

Similarly, the hopping rate li from the site i to the site i−1 is
proportional to the total current of particles entering and
leaving the low-density domain �−=
:

li =
1

1 − 
 − �

�

j=1

i−1


 j�1 − 
� − �
j=1

i−1

� j
�, i = 2, . . . ,L + 1.

�17�

The shock is reflected at the boundaries, i.e., l1=0 and rL+1
=0.

If we compare the bias vi=ri− li of the random walker in
the present model with the one from the TASEP �vi=�−
�,
we see that, as long as 
��, the qualitative picture from the
TASEP remains the same: for 
�� we have vi�0, ∀ i, and
the random walker is localized at the right end �low-density
phase�; for 
�� we have vi�0, ∀ i, and the random walker
is localized at the left end �high-density phase�. However, on
the coexistence line 
=� the bias is not zero, except at the
specific site i=L /2+1 �x�1/2 for L�1�, where both hop-
ping rates ri and li are the same.

The stationary probability Pi to find the random walker at
the site i is given by the set of equations �23�

ri−1Pi−1 + li+1Pi+1 − �ri + li�Pi = 0, i = 2, . . . ,L ,

l2P2 − r1P1 = 0,

rLPL + − lL+1PL+1 = 0, �18�

where the last two equations account for the reflecting
boundary conditions. The solution to the above equations
�18� can be expressed in the closed form as

Pi =
1

ZL
�
j=1

i−1
rj

lj+1
�

1

ZL
e−Vi, �19�

where ZL is the normalization. In the last expression we have
rewritten Pi in another form using the potential Vi,

Vi = − �
j=1

i−1

ln
rj

lj+1
, L + 1 � i � 1. �20�

Once the probability Pi is known, the density profile ��iDW

in the domain-wall approximation is simply given by �23�

��iDW = 
 �
j=i+1

L+1

Pj�
 + 
�
j=1

i

Pj��1 − �� . �21�

The expression �21� can be evaluated numerically and com-
pared with the profiles obtained by MC simulations. In Fig. 5
this was done for �=1.5 and various system sizes �L
=10, 100, and 1000�. The agreement between the MC data

and Eq. �21� is excellent and justifies our initial assumption,
even for very small system sizes �L=10�. �A slight discrep-
ancy between Eq. �21� and the actual profile obtained by MC
simulations was observed only for � close to 1, and it could
be reduced by increasing the size of the system.�

The nonlinear shape of the profile becomes more pro-
nounced as L increases. For example, in Fig. 5, the differ-
ence between the density profile for �=1.5 and the linear
profile is more evident for larger system sizes, suggesting
that in the thermodynamic limit the shock tends to localize in
the middle of the chain.

As we increase the parameter �, the deviation from the
linear profile is less visible. In the limit �→�, which is
exactly the TASEP, we should obtain the linear profile again.
Already for �=3.0 �Fig. 6� the density profile is almost lin-
ear for any system size, similarly as in the case of the
TASEP, and the aim is to find the threshold at which the
standard TASEP regime sets on.

As pointed out in �25�, the localization of the random
walker is possible when the effective potential �20� is not
homogeneous but has minima and maxima. If the potential
has only one minimum, as in the present model, the localiza-
tion is possible in the sense that

FIG. 5. �Color online� Comparison of the density profiles �

=�=0.2, �=1.5� for various chain sizes L=10, 100, and 1000 ob-
tained from MC simulations �symbols� and from the domain-wall
approach �solid lines�.

FIG. 6. �Color online� Comparison of the density profiles �

=�=0.2, �=3.0� for various chain sizes L=10, 100, and 1000 ob-
tained from simulations �symbols� and from the domain-wall ap-
proach �solid lines�.
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lim
L→�

��x2s − �xs
2�1/2

L
= 0, �22�

where x is the position of the random walker and �¯s de-
notes the average taken over the stationary probability Pi.
Using the above definition we plot the standard deviation
�L= ��x2s− �xs

2�1/2 as a function of the system size L in Fig.
7. We find �L in good agreement with the power law

�L � �L�/2, 1 � � � 2,

L , � � 2.
�23�

Therefore, the domain wall is localized for 1���2 and
delocalized for ��2. This result can be obtained explicitly
by taking the continuum limit of the expressions �16�, �17�,
�19�, and �20� and checking the Taylor expansion of the po-
tential �20� around the minimum located at the site i=L /2
+1 �for even system size L�. Since for 
=� the symmetry
relation li=rL−i+2 holds, only the even powers of �x−1/2� are
nonvanishing:

V�x� = V�1/2� + c2�x − 1/2�2 + c4�x − 1/2�4 + ¯ . �24�

It can be shown �see Appendix B� that both c2 and c4 are of
the same order in L,

c2 � c4 � L2−�. �25�

Therefore, if we keep only the quadratic term in the Taylor
expansion, we obtain the Gaussian distribution and the vari-
ance proportional to 1/�c2 yields exactly the result �23�.

The phase separation has already been encountered in the
TASEP with “Langmuir kinetics,” first for particle creation
and annihilation rates �A and �D that depend on the system
size as L−1 �24� and later for �A ,�D�L−a as long as 1�a
�2 �26�. In the first case the width of the shock was found to
decay as L−1/2, whereas in the second case the decay was still
algebraic but with the exponent a /2. Since the similarity
between these two models and the one we consider here lies
in the fact that both models have a bulk reservoir, we
checked the dependence of the rates 
i and �i on the system
size L for ��1 �see Appendix B�. In the continuum limit
and away from the boundaries, we found a similar power-law
dependence on the system size, i.e., 
�x� ,��x��L−�, so that
the comparison can be made with the TASEP with Langmuir

kinetics and where a=�. In terms of the characteristic length
� �7�, it is clear that the similarity between the present model
and the other two models with bulk reservoirs is established
only when � diverges, since in this case the boundaries have
a long-range influence on the bulk dynamics.

B. Maximum-current phase

As discussed in Sec. III �see Fig. 4�, the maximum-current
phase also appears in the presence of long-range hopping
when ��1 and sets in by a continuous phase transition for
the same values of parameters �
 ,�� as in the standard
TASEP. However, one may expect that long-range hopping
would alter the long-range correlations and therefore the be-
havior at the second-order phase transition to the maximum-
current phase.

The exact solution in the case of the TASEP with nearest-
neighbor hopping �9,10� shows that the transition to the
maximum-current phase is characterized by an algebraic de-
cay of the correlation function, while the correlation length
remains infinite in the entire maximum-current phase. This is
reflected in the algebraic decay of the density profile toward
its bulk value �=1/2 with the exponent 1 /2.

We studied this decay in the presence of long-range hop-
ping by considering the deviation of a profile from its bulk
value, ���k�����k−1/2�, by using Monte Carlo simula-
tions. We found that for given 
, �, and � and for different
system sizes L1 and L2, ���k� obeys the scaling relation

���k/L1� = 
L2

L1
�x

���k/L2� , �26�

where x depends continuously on � for 1���2 and is
equal to the exponent 1 /2 for ��2. Figure 8�a� shows typi-
cal results of Monte Carlo simulations ��=1.5,
=�=0.8�

FIG. 7. Standard deviation of the domain-wall position accord-
ing to the stationary probability Pi for 
=�=0.1 and various �.

FIG. 8. �Color online� Deviation ���k /L� of the density profile
from its bulk value �=1/2 for �=1.5 and various system sizes L
�
=�=0.8�, before �a� and after �b� the scaling relation �26� was
applied.
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for ���k /L� for various system sizes L. The best numerical
fit to the scaling Eq. �26�, for which all data collapse on a
single curve �see Fig. 8�b��, is achieved for x=1/4. In Fig. 9
we present the collapsing fits for several values of �. The
best numerical results for collapsing fits are achieved for x
= ��−1� /2 which, along with x=1/2 for ��2, leads to the
conjecture

x = min�� − 1

2
,
1

2
�, � � 1. �27�

V. CONCLUSION

We considered the totally asymmetric exclusion process
with open boundary conditions, generalized in such a way
that the long-range effect was introduced directly, through
long-range hopping, where the probability of distant hop-
pings decays as a power law 1/ l�+1. Boundary conditions
were adjusted in such a way that the periodic boundary con-
ditions are attained in the special case 
=1−�.

We found that for ��1 the phase diagram of this gener-
alized model remains the same as the one in the TASEP with
the nearest-neighbor hopping, containing the same first- and
second-order transition lines. The bulk density equals the one
in the standard TASEP, while the current is equal to the one
in the TASEP normalized by a factor depending on �.

As expected, different effects were found at the transition
lines, where the long range of hopping has an impact on
long-range correlations which determine the character of the
transitions. They were observed by studying the density pro-
file.

At the first-order transition line 
=� the profile becomes
localized, in contrast to the standard TASEP case, but simi-
larly to the model which includes Langmuir kinetics �26�.

As in the standard TASEP, the second-order phase transi-
tion to the maximum-current phase has an infinite correlation
length �as long as ��1�, which remains infinite in the whole
maximum-current phase, and the profile displays an alge-
braic decay. However, the corresponding exponent is differ-
ent from 1/2 in the region 1���2, where it depends on the
range parameter �.

In the special case �=−1, which belongs to the regime
without phase transitions, ��1, and corresponds to uniform
hopping probability, we derived the exact analytical results
both for the bulk properties and for the density profile along
the line 
=�.

The dynamical scaling, now under consideration, should
give a more complete description of the considered second-
order phase transition. It would also be of interest to examine
the relation to some other models for nonequilibrium phase
transitions with long-range interactions, in particular the
models including temperature such as the two-temperature
kinetic Ising model.

APPENDIX A: CASE �=−1 IN THE CONTINUUM
MEAN-FIELD APPROXIMATION

In the continuum limit we set i /L→x and substitute all
sums in Eq. �8� with integrals. When �=−1, we get simple
expressions for the probabilities 
�x� and ��x�:


�x� = 
�1 − x�, ��x� = �x . �A1�

Inserting �A1� in �8� gives the first-order nonlinear differen-
tial equation

dn

dx
�2n + �� − 
 − 1�x + �1 − � + 
�� − n − 
�1 − x� = 0

�A2�

with the boundary conditions

n�0� = 0 and n�1� = � . �A3�

In the above expressions, dn /dx=��x�, and ��
 ,��
=�0

1��x�dx is the bulk density. For 
=� the first-order differ-
ential equation �A2� is exact, leading to

d

dx
��n�x��2 + n�x�
1

2
+ 
 − x� + 
1

2

x2 − 
x�� = 0,

�A4�

where we used the fact that ��
 ,
�=1/2. From �A4� the
density profile is easily obtained as

��x� =
1

2
+

1

2

�1 − 2
��x − 1/2�
�x2�1 − 2
� − x�1 − 2
� + �
 + 1/2�2

.

�A5�

Finally, the total current j /L of particles entering or leaving
the chain can be obtained by inserting �A5� into the expres-
sion for current, so that

j/L = 
�
0

1

�1 − x��1 − ��x��dx = ��
0

1

x��x� , �A6�

which gives Eq. �13�.

APPENDIX B: ASYMPTOTIC EXPANSIONS OF �i, �i, ri,
AND li IN THE LIMIT OF LARGE L

We start by rewriting �3� and �2� in a more convenient
form:

FIG. 9. �Color online� Deviation ���k /L� of the density profile
from its bulk value �=1/2 for various system sizes L=800, 1500,
and 5000 �
=�=0.8� for �=1.2, 1.5, and 1.8 �from top to bottom�.
The profiles ���k /L� for the same � are scaled to the profile
���k /L0� �L0=5000� according to Eq. �26�.
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i = 

1 −
�i−1�� + 1�
�L�� + 1� �, �i = �
1 −

�L−i�� + 1�
�L�� + 1� � .

�B1�

Assuming the convergence of the zeta series, we estimate the
partial sum in the limit of large L,

�L�� + 1� = ��� + 1� −
1

�L� + o�L−�−1� . �B2�

After inserting �B2� in the expressions �3� and �2� and taking
the continuum limit with x= i /L, we get for 0�x�1


�x� �



��� + 1��
��x − 1/L�−� − 1�L−�, �B3�

��x� �
�

��� + 1��
��1 − x�−� − 1�L−�. �B4�

Similarly, the expressions for the hopping rates ri and li in
the continuum limit for 0�x�1 are

r�x� �
��1 − ��
1 − 
 − �


L +
f�x,�,
,��

L�−1 � , �B5�

l�x� �

�1 − 
�
1 − 
 − �


L +
f�1 − x + 2�,�,�,
�

L�−1 � , �B6�

where �=1/L, and the function f�x ,� ,
 ,�� is finite for 0
�x�1. We define �i

�n� as the discrete nth-order “derivation”
of Vi,

�i
�n� = �i+1

�n−1� − �i
�n−1�, �B7�

with �i
�1�=Vi−Vi−1. In the continuum limit with x= i /L we

get

�i
�n� → L−n dn

dxnV�x� . �B8�

Finally, inserting the expressions �16� and �17� in the poten-
tial �20� and expanding the function f�x ,� ,
 ,�� around the
minimum of the potential, x=1/2+� /2, we obtain the result
for the first two expansion coefficients:

c2 =
1

2
� d2

dx2V�x��
x=1/2

� −
2f��1/2,�,
,
�


�1 − 
�
L2−�, �B9�

c4 =
1

24
� d4

dx4V�x��
x=1/2

� −
2f��1/2,�,
,
�


�1 − 
�
L2−�.

�B10�
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